# The Commens DictionaryQuote from ‘Supplement’

Quote:

A perfect continuum belongs to the genus, of a whole all whose parts without any exception whatsoever conform to one general law to which same law conform likewise all the parts of each single part. Continuity is thus a special kind of generality, or conformity to one Idea. More specifically, it is a homogeneity, or generality among all of a certain kind of parts of one whole. Still more specifically, the characters which are the same in all the parts are a certain kind of relationship of each part to all the coördinate parts; that is, it is a regularity. The step of specification which seems called for next, as appropriate to our purpose of defining, or logically analyzing the Idea of continuity, is that of asking ourselves what kind [of] relationship between parts it is that constitutes the regularity a continuity; and the first, and therefore doubtless the best answer for our purpose, not as the ultimate answer, but as the proximate one, is that it is the relation or relations of contiguity; for continuity is unbrokenness (whatever that may be,) and this seems to imply a passage from one part to a contiguous part. What is this ‘passage’? This passage seems to be an act of turning the attention from one part to another part; in short an actual event in the mind. This seems decidedly unfortunate, since an event can only take place in Time, and Time is a continuum; so that the prospect is that we shall rise from our analysis with a definition of continuity in general in terms of a special continuity. However, it is possible that this objection will disappear as we proceed.

Date:
1908-05-24
References:
CP 7.535 n. 6
Citation:
‘Continuity’ (pub. 30.03.15-18:23). Quote in M. Bergman & S. Paavola (Eds.), The Commens Dictionary: Peirce's Terms in His Own Words. New Edition. Retrieved from http://www.commens.org/dictionary/entry/quote-supplement.
Posted:
Mar 30, 2015, 18:23 by Mats Bergman